EURIPIDES² - PENTA
Consortium Building Day
Barcelona – 18 May 2017

HIL Simulation Training Platform for AI PMS in Smart Vessel

Prof. Jeehoon Jung
APIPEL, ECE, UNIST
jhjung@unist.ac.kr
Hardware-In-the-Loop Simulation (HILS)

• Hardware-In-the-Loop Simulation

 - Hardware can be tested with real system
 - Real-Time Simulator emulates virtual system in real-time
 - Controller for power converter is tested with virtual system
Hardware-In-the-Loop Simulation (HILS)

• Applications
 – Electric vehicle controller test
 – Power converter test for Renewable Energy
 – Power management system test for Microgrid
Advanced Power Interface & Power Electronics Lab

• APIPEL
 – For Smart grid
 • Solid State Transformer
 • DC Micro-grid Test bed
 • Low Voltage Direct Current Distribution
 – For industry application
 • High Frequency/Density Power Converter
 • Wireless Power Transmission (WPT)
 • Induction Heating (IH)
 – With Power Hardware-in-the-Loop Simulation
 • Renewable energy
 • Modeling of Electric Ship
 • Power Hardware-in-the-Loop Simulation
 – 7 Students are studied in APIPEL
 • 3 Doctor target students
 • 4 Master target students
Proposal Introduction

• Proposal
 – Target hardware: Artificial Intelligent Power Management System (AI PMS)
 – Virtual test and training platform for AI PMS
 – We will provide HIL test & training platform using real-time simulation technique.
Proposal Introduction

- **HILS for Artificial Intelligence Power Management System (AI PMS)**
 - Power Management System (PMS)
 - PMS monitors and controls power system for safe and efficient operation
 - PMS prevents blackout of vessel’s power system
Proposal Introduction

- HILS for Artificial Intelligence Power Management System (AI PMS)
 - Conventional PMS operation
 - Operation regulation according to situation
 - The operation regulation is not ideal for efficiency

- AI PMS
 - Artificial Intelligence + PMS
 - collects huge power system data by itself while operating power system
 - Operates power system in the best situation based on the collected data
 - AI PMS gives better energy efficient operation
Proposal Introduction

- **HILS for AI PMS Test & Training**
 - **Virtual vessel’s power system**
 - Mathematical modeling of ship power system
 - Real-time simulator calculates target model in real-time manner
 - **Test and training platform**
 - AI PMS can collect the data by controlling virtual ship power system
 - Various power system situation can be simulated by adjusting target model
 - Safe, cost-effective and time-saving test and training platform

Concept of HILS for AI PMS test
Proposal Introduction

• R&D Consortium
 – We can develop HIL-based test & training system
 – We need AI and PMS experts (company, univ., RI, etc.)
 – Development of AI PMS with training and testing by using the proposed HILS test platform
Proposal Introduction

• R&D Competence of APIPEL, UNIST
 – Various HILS Test Platform Development
 • Power HILS for renewable energy (PV and battery)
 • Power HILS for various power converters
 • RT modelling of ship’s power systems and DC microgrid for HILS applications

Power HILS for PV

Power HILS for Seawater Battery

HILS for Ship’s PMS
Partners

- Research Fund Sources in Korea
 - National Research Foundation of Korea
 - Korea Electrotechnology Research Institute
 - Korea Electric Power Corporation
 - Ministry of Science, ICT, and Future Planning
 - Korea East-West Power Company
 - National Institute of Fisheries Science
 - Hyundai Motors
 - LG Electronics
 - Hyundai heavy industries
Contact

• For more information and for interest to participate please contact:
• **Jeehoon Jung** Ph.D/Associate Professor
• Dept. of Electrical and Computer Engineering (ECE)
• Ulsan National Institute of Science and Technology (UNIST)
• Phone: +82-52-217-2140, +82-10-9811-3251
• jhjung@unist.ac.kr
• http://apipel.unist.ac.kr
Reference

APPENDIX

Research Project
Research Projects

• DC Microgrid
 – High performance bidirectional power conversion technology
 – AC-DC inverters and DC-DC converters
 – ESS power interface for DC distribution system
 – Autonomous DC microgrid using power line comm.
 – Virtual DC microgrid test-bed using power HILS system
Research Projects

- LVDC Power Converters for DC Microgrid
 - 1500 V dipole system for safety and reliability
 - High efficiency single- and multi-level converters
• **High Frequency LLC Resonant Converter**
 - High power density using high switching frequency
 - Decreasing passive components size (L and C)
 - Low SW loss with next-generation wide band-gap devices
 - Design digital controller for wide control bandwidth
Research Projects

- Modelling of Sea-Water Battery
 - Use Chemical-Electric modelling before perfect development of Sea-Water Battery
 - V-I curve characteristics test of Sea-Water Battery
 - Static and dynamic response of V-I prediction

\[E = E^0 - \frac{RT}{nF} \ln Q \]
\[i = nFAk^0 \left[C_0(x = 0, t) e^{-\alpha x(E-E^0)} - C_0(x = 0, t) e^{(1-\alpha) x(E-E^0)} \right] \]
\[V_{thm} = i \left[\sum_j R_{c,j} + \sum_k \frac{L_{c,k}}{\sigma_{c,k} A_{c,k}} + \frac{dz}{\sigma_m (\Delta \lambda(z))} \right] \]

Concept of SeaWater Battery

Mathematical modelling

Seawater Power HIL

Real-Time Simulation

SW Battery Converter

Simulation modelling
• PHILS of Electric Ship for Emulating Electric Behavior of Power Interface
 – Ship’s entire electric system can be tested under similar operating circumstances.
 – Shipping power system analysis can be achieved according to various operating conditions.
 – Reduction of development/test time and cost
Research Projects

• Power Network of Electric Vehicle
 - Simulate power network and power flow of the vehicle
 - Power HIL simulation
 • Test-bed including vehicle and power hardware
 • EV hardware feasibility verification
Research Projects

• Design of Battery Management System (BMS)
 – A BMS is an electronic device that manages a rechargeable battery in order to protect the battery from damage
 – A BMS may project its batteries by preventing its safe operating area, such as:
 • Charge/Discharge control
 • Estimation of SOC and SOH
 • Cell balancing
 • Thermal management
Research Projects

- Grid System for Hyperloop
 - Total 80 MW power transmission is required to push ahead the capsule
 - AC-DC Rectifier from AC grid to DC grid (80 MW)
 - Battery Charger from DC grid to UPS battery (5 MW)
Research Projects

• Hybrid IH system for new value-addition
 – Free cook zone IH system with new functionality
 – High efficiency IH inverter and power control algorithm

![Scheme for IH application](image1)

![New Functionality of IH](image2)

Product Design of Free Cook Zone System

Power Conversion Efficiency and Power Factor